Fórmula de Taylor com termo de erro de Lagrange, [;\mathcal{E}_n(t,\varepsilon);]
- Fórmula de Taylor com termo de erro de Lagrange,
@Latex \mathcal{E}_n(t,\varepsilon), \varepsilon>0:
@Latex f(t+\varepsilon) =
@Latex f(t)+\varepsilon f\prime(t)+\frac{\varepsilon^2}{2} f\prime \prime(t)+...+\frac{\varepsilon^n}{n!} f^{(n)}(t)+\mathcal{E}_n(t,\varepsilon)=
@Latex \sum_{i=0}^n \frac{ \varepsilon^i }{i!} f^{(i)} (t)+\mathcal{E}_n(t,\varepsilon)\sum_{i=0}^n \frac{ \varepsilon^i }{i!}= f^{(i)} (t)+\mathcal{E}_n(t,\varepsilon)
-
@Latex \exists \xi \in [t,t+\varepsilon],
tal que:
@Latex |\mathcal{E}_n(t,\varepsilon)|\leq\frac{ \varepsilon^{n+1} }{ (n+1)! }| f^{(n+1)}(\xi) |
- Anote:
@Latex \lim_{\varepsilon \rightarrow 0}\frac{ \mathcal{E}_n(t,\varepsilon) }{ \varepsilon^{n} }=0
- Escrevemos:
@Latex o(\varepsilon^{n}):=\mathcal{E}_n(t,\varepsilon)
@Latex f\prime(t)=\frac{ f(t+\varepsilon)-f(t)}{\varepsilon} +o(\varepsilon)