Atividades 6:

  1. Arquivo N01.py: Representa em Python as matrices como Python lists of lists:
    @Latex \underline{\underline{\textbf{A}}}_0= \left(\begin{array}{cccc} 1& 1& 1& 1\\1&-1& 1&-1\\1& 1&-1&-1\\-1& 1& 1&-1\\\end{array}\right), @Latex \underline{\underline{\textbf{A}}}_1= \left(\begin{array}{cccc}1& 2& 4& 8\\1&-1& 1&-1\\1&-2& 4&-8\\1& 1& 1& 1\\\end{array}\right), @Latex \underline{\underline{\textbf{A}}}_2=\left(\begin{array}{cccc}1& 1& 1& 1\\1&-1& 1&-1\\1& 2& 4& 8\\1& 3& 9&27\\\end{array}\right), @Latex \underline{\underline{\textbf{A}}}_3=\left(\begin{array}{cccc}1& 1& 1& 1\\1& 2& 4& 8\\1& 3& 9&27\\1& 4&16&64\\\end{array}\right),
    @Code N01.py
  2. Arquivo N02.py: Usando um laço duplo, calcule as matrices: @Latex \underline{\underline{\textbf{A}}}_i +\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}. @Code N02.py
  3. Arquivo N03.py: Usando um laço duplo, calcule os vetores: @Latex \underline{\underline{\textbf{A}}}_i -\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}.
  4. Arquivo N04.py: Calcular os produtos: @Latex \underline{\underline{\textbf{A}}}_i ~\underline{\underline{\textbf{A}}}_j e @Latex \underline{\underline{\textbf{A}}}_j ~\underline{\underline{\textbf{A}}}_i, ~ i,j \in \{0,1,2,3\}.
  5. Arquivo N05.py: Calcular a comutação das matrices @Latex \underline{\underline{\textbf{A}}}_i ;] e [; \underline{\underline{\textbf{A}}}_j
    @Latex \underline{\underline{\textbf{D}}}_{ij}=\underline{\underline{\textbf{A}}}_i~\underline{\underline{\textbf{A}}}_j-\underline{\underline{\textbf{A}}}_j~\underline{\underline{\textbf{A}}}_i,~ i,j \in \{0,1,2,3\}.
Verifique os cálculus manualmente!