Epicicloids e Epitrochoids

Epicicloids, [;r,R >0;] e [; \omega=\frac{R+r}{r} ;]:
[; \underline{\textbf{r}}(t) = \begin{pmatrix} (R+r)\cos{t}-r \cos{\omega t}\\ (R+r)\sin{t}-r \sin{\omega t}\\ \end{pmatrix}, \quad t \in \mathbb{R} ;]
Epitrocoids, [; r,R >0, b \in \mathbb{R};]:
[; \underline{\textbf{r}}(t) = \begin{pmatrix} (R+r)\cos{t}-(r+b) \cos{\omega t}\\ (R+r)\sin{t}-(r+b) \sin{\omega t}\\ \end{pmatrix}, \quad t \in \mathbb{R} ;]
  1. Desenhe os Epicicloids para [;R=1;] e [;r=3,2,1,1/2,1/3;]
  2. Desenhe os Epitrocoids para [;R=1=;], [;r=3,2,1,1/2,1/3;] e [;b=3,2,1,1/2,1/3,0,-1/3,-1/2,-1,-2,-3;].
Em Epicycloid.py: @Code ../../../Code/Epicycloid.py Em Epicycloids.py: @Code ../../../Code/Epicycloids.py