Atividades 3:
- Arquivo N01.py: Representa em Python as matrices como instanças da
classe Matrix:
[;
\underline{\underline{\textbf{A}}}_0=
\left(\begin{array}{cccc}
1& 1& 1& 1\\
1&-1& 1&-1\\
1& 1&-1&-1\\
-1& 1& 1&-1\\
\end{array}\right),
\quad
\underline{\underline{\textbf{A}}}_1=
\left(\begin{array}{cccc}
1& 2& 4& 8\\
1&-1& 1&-1\\
1&-2& 4&-8\\
1& 1& 1& 1\\
\end{array}\right),
;]
[;
\underline{\underline{\textbf{A}}}_2=
\left(\begin{array}{cccc}
1& 1& 1& 1\\
1&-1& 1&-1\\
1& 2& 4& 8\\
1& 3& 9&27\\
\end{array}\right),
\quad
\underline{\underline{\textbf{A}}}_3=
\left(\begin{array}{cccc}
1& 1& 1& 1\\
1& 2& 4& 8\\
1& 3& 9&27\\
1& 4&16&64\\
\end{array}\right),
;]
-
Arquivo N02.py: Usando um laço duplo e sobrecarga de operadores,
calcule as matrices:
[; \underline{\underline{\textbf{A}}}_i +\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}. ;]
-
Arquivo N03.py: Usando um laço duplo e sobrecarga de operadores,
calcule os vetores:
[; \underline{\underline{\textbf{A}}}_i -\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}. ;]
-
Arquivo N04.py: Calcular os produtos:
[; \underline{\underline{\textbf{A}}}_i ~\underline{\underline{\textbf{A}}}_j ;]
e
[; \underline{\underline{\textbf{A}}}_j ~\underline{\underline{\textbf{A}}}_i, ~ i,j \in \{0,1,2,3\}. ;]
-
Arquivo N05.py: Calcular a comutador das matrices
[; \underline{\underline{\textbf{A}}}_i ;] e [; \underline{\underline{\textbf{A}}}_j ;]:
[;
\underline{\underline{\textbf{D}}}_{ij}
=
\underline{\underline{\textbf{A}}}_i~
\underline{\underline{\textbf{A}}}_j
-
\underline{\underline{\textbf{A}}}_j~
\underline{\underline{\textbf{A}}}_i,
~ i,j \in \{0,1,2,3\}.
;]
-
Arquivo N06.py: Calcular as potências:
[; \underline{\underline{\textbf{A}}}_i^j, ~ i,j \in \{0,1,2,3\}. ;]
Verifique os cálculus manualmente!