Incidence
- Axioms:
- $I_1$,
Foreach line, $r$, exists a point on the line
-
and a point off the line:
\[
\forall r \in \mathcal{R}:
\qquad
\exists P \in \mathcal{P}
\quad\wedge\quad
\exists P \notin \mathcal{P}
\]
- $I_2$, two points defines a line (uniquely):
\[
\forall P \neq Q \in \mathcal{P}:
\qquad
\exists ! r \in \mathcal{R}:
\qquad
P, Q \in r
\]
- $I_3$:
Exists two (distinct) Points.
\[
\exists P,Q \in \mathcal{P}: ~p \neq Q
\]
- Theorems:
-
$\mathcal{P} \neq \emptyset$
-
$ \exists P,Q,R \in \mathcal{P}$ distintos.
-
$ \exists r,s,t \in \mathcal{R}$ distintos.
- Models:
-
3 Points and 3 Lines.
-
4 Points and 6 Lines.
@Image Fig.svg 800px
@Code Fig.tikz.tex