Ruler Axiom
Exists Measure of Distance
- Axiom: $\forall r \in \mathcal{R}$,
exists Bijective
Distance Function,
$f: r \mapsto \mathbb{R}$:
\[
d(A,B)=
\left|
f_r(B)-f_r(A)
\right|
\]
- Definition, $X$ is inbetween $A$ and $B$:
- $A, B, X \in \mathcal{P}$ colineares.
- $d(A,X)+d(B,X)=d(A,B)$.
- Put: $a=f(A)$, $b=f(B)$, $x=f(X)$.
- $a*x*b \quad\Leftrightarrow\quad a<x<b \vee b<x<a$
- Teorema:
\[
A*X*B
\quad\Leftrightarrow\quad
a*x*b
\]
- Models and Distance Functions:
- Cartesian:
- Points: $\mathbb{R}^2$: $(x,y)$.
- Lines: $y=ax+b$, $a,b \in \mathbb{R}$.
- $f_r(x)=\sqrt{1+a^2} x$.
- Taxist:
- Points and Lines as in Cartesian.
- $f_r(x)=(1+|a|) x$.
@Image Fig/Fig.svg 800px
Main, Fig.tikz.tex:
@Code Fig/Fig.tikz.tex height=300px width=600px