Congruence of Triangles
If $AB=A'B'$, $AC=A'C'$ and $\widehat{A}=\widehat{A'}$,
the triangles $\triangle ABC$ and $\triangle A'B'C'$ are congruent.
- Congruence:
$\triangle ABC \equiv \triangle A'B'C$,
iff $\triangle ABC$ may be transferred
onto $\triangle A'B'C'$ by a
Rigid Transformation
- Similiance:
$\triangle ABC \sim \triangle A'B'C$,
iff all (measures of) angles are equal.
- Consequences, Theorems:
- Correspondent Angles
- Alternate-Internal Angles
- Uniqueness of Perpendicular through Point not on the Line
- Existence of Parallel through Point not on the Line ($P_2$)