Mediatriz
Foci $A(x_a,y_a)$ and $B(x_b,y_b)$:
\[
d_T(A,B)=|x_b-x_a|+|y_b-y_a|=|d_x|+|d_y|
\]
- Center: $M=\frac{1}{2}(A+B)$.
Translate to Origin!?
-
$
\mathcal{M}_T=
\{ P \in \mathcal{P}|~~
d_T(A,P)=d_T(B,P)\}
$
- $P=(x,y)$:
\[
|x-x_a|+|y-y_a|
=
|x-x_b|+|y-y_b|
\]
\[
\pm(x-x_a) \pm(y-y_a)
=
\pm(x-x_b) \pm(y-y_b)
\]
- 9 Areas:
@Carousel @Taxist/Mediatriz-*.svg 1 600 600px