Distance from Point to Line
Line $r$ with distinct Points $A(x_a,y_a)$ and $B(x_b,y_b)$.
Given $Q\notin r$:
-
\[
\overrightarrow{PQ}
=
\overrightarrow{QA}-t~\overrightarrow{AB}
=
\begin{pmatrix}
x_a-x+t(x_a-x_b)
\\
y_a-y+t(y_a-y_b)
\end{pmatrix}
\]
-
\[
d(t)=d(P,Q)
=
|x_a-x+t(x_a-x_b)|
+
|y_a-y+t(y_a-y_b)|
\]
- Minimums:
- $x_a \neq x_b$:
\[t_x=\frac{x-x_a}{x_a-x_b}\]
\[d_x=\left|y_a-y+\frac{x-x_a}{x_a-x_b}(y_a-y)\right|=\]
\[|y_a-y|\left| \frac{x_a-x_b+x-x_a}{x_a-x_b} \right|\]
\[\left| \frac{(x-x_b)(y-y_a)}{x_b-x_a} \right|\]
- $y_a \neq y_b$:
\[t_y=\frac{y-y_a}{y_a-y_b}\]
\[d_y=\left|x_a-x+\frac{y-y_a}{y_a-y_b}(x_a-x)\right|=\]
\[\left|\frac{(x_a-x)(y_b-y)}{y_b-y_a}\right|\]
- Projection Candidates:
- $x_a \neq x_b$:
\[
Q_x=
\begin{pmatrix}
x\\
\frac{ y_a(x_b-a)+y_b(x-x_a) }{ x_b-x_a }
\end{pmatrix}
\]
- $y_a \neq y_b$:
\[
Q_y=
\begin{pmatrix}
\frac{ x_a(y_b-y)+x_b(y-y_a) }{ y_b-y_a }
\\y
\end{pmatrix}
\]
@Carousel @Figs/Fig-*.svg 1 500 600px
@Code Figs/Fig.tikz.tex
@Code Figs/Fig/Calc.tikz.tex
@Code Figs/Figs/Figs/Figs/Fig/Draw.Projections.tikz.tex
@Code Figs/Fig/Draw.Distances.CS.tikz.tex
@Code Figs/Fig/Draw.Distances.Function.tikz.tex
@Code Figs/Fig/Draw.Distances.Marks.tikz.tex
@Code Figs/Fig/Draw.Distances.Parallels.tikz.tex