$I_2$: Two points define a line.
- $A=(x_a,y_a)$ e $B=(x_b,y_b)$:
$x_a < 0 < x_b \wedge y_b > y_a$:
\[
\begin{Bmatrix}
y_a=m x_a+k
\\
y_b=\frac{1}{2} m x_b+k
\end{Bmatrix}
\qquad \Leftrightarrow \qquad
\begin{Bmatrix}
\displaystyle
m=\frac{ y_b-y_a }{ \frac{1}{2} x_b -x_a }
\\
\displaystyle
k=\frac{ \frac{1}{2} x_b y_a -x_a y_b }{ \frac{1}{2} x_b -x_a }
\end{Bmatrix}
\]
- Moulton Line point on $y$-axis:
\[
C=
\left(
0,\frac{ \frac{1}{2} x_b y_a -x_a y_b }{ \frac{1}{2} x_b -x_a }
\right)
\]