Cartesian Points within the Unit Disc: $x^2+y^2<1$.
Examples: \[ \overrightarrow{OP} = r_P\begin{pmatrix}\cos{\theta_P}\\\sin{\theta_P}\end{pmatrix} = \underline{e}_P, \qquad \overrightarrow{OQ} = r_Q\begin{pmatrix}\cos{\theta_Q}\\\sin{\theta_Q}\end{pmatrix} = \underline{e}_Q \] Hat vectores: \[ \underline{f}_P = \underline{\widehat e}_P = \begin{pmatrix}-\sin{\theta_P}\\\cos{\theta_P}\end{pmatrix}, \qquad \underline{f}_Q = \underline{\widehat e}_Q = \begin{pmatrix}-\sin{\theta_Q}\\\cos{\theta_Q}\end{pmatrix} \] Note, com $\theta=\theta_Q-\theta_P$: \[ \underline{e}_P \cdot~\underline{e}_Q = \underline{f}_P\cdot~\underline{f}_Q = \cos{\theta} \] \[ \underline{e}_P \cdot~\underline{f}_Q = -\underline{e}_Q\cdot~\underline{f}_P = \sin{\theta} \]