Convex Combination of $\underline{a}_1, \underline{a}_2$: \[ \underline{x} = \underline{a}_1+t\underline{a}_{12} = \underline{a}_2+t'\underline{a}_{21}, \quad t=1-t' \in \mathbb{R} \] $\underline{a}_{12}=\underline{a}_{2}-\underline{a}_{1}$. Particularly, for $\underline{p}_1$: \[ \underline{p}_1 = \underline{a}_1+t_1 \underline{a}_{12} = \underline{a}_2+t_1' \underline{a}_{21} \] And $\underline{p}_2$: \[ \underline{p}_2 = \underline{a}_1+t_2 \underline{a}_{12} = \underline{a}_2+t_2' \underline{a}_{21} \]