Convex Combination of $\underline{p}_1, \underline{p}_2$: \[ \underline{x} = \underline{p}_1+\tau \underline{p}_{12} = \underline{p}_2+\tau' \underline{p}_{21}, \quad \tau=1-\tau' \in \mathbb{R} \] $\underline{p}_{12}=\underline{p}_{2}-\underline{p}_{1}$. Particularly, for $\underline{a}_1$: \[ \underline{a}_1 = \underline{p}_1+\tau_1 \underline{p}_{12} = \underline{p}_2+\tau_1' \underline{p}_{21} \] And $\underline{a}_2$: \[ \underline{a}_2 = \underline{p}_1+\tau_2 \underline{p}_{12} = \underline{p}_2+\tau_2'\underline{p}_{21} \]