Distance Function: \[ f_r(X)=\frac{1}{2} \ln{ \left(\frac{XP}{XQ}\right) } \] Distance: \[ d_K(X,Y)= \frac{1}{2} \ln{ \left(\frac{XP}{XQ} \cdot \frac{YQ}{YP}\right) } \]
@Image Klein.Dist.svg height=100px
\[ XP=t||\underline{e}_Q-\underline{e}_P||, \quad XQ=(1-t)||\underline{e}_Q-\underline{e}_P|| \] \[ f_r(t)=\frac{1}{2} \ln{\left( \frac{t}{1-t} \right)} \] Compare, Inverse Tangent Hyperbolic: \[ Artanh~x=\frac{1+x}{1-x}, ~-1 \lt x \lt 1 \]