Distance Function:
\[
f_r(X)=\frac{1}{2} \ln{ \left(\frac{XP}{XQ}\right) }
\]
Distance:
\[
d_K(X,Y)=
\frac{1}{2} \ln{ \left(\frac{XP}{XQ} \cdot \frac{YQ}{YP}\right) }
\]
@Image Klein.Dist.svg height=100px
\[
XP=t||\underline{e}_Q-\underline{e}_P||,
\quad
XQ=(1-t)||\underline{e}_Q-\underline{e}_P||
\]
\[
f_r(t)=\frac{1}{2}
\ln{\left(
\frac{t}{1-t}
\right)}
\]
Compare, Inverse Tangent Hyperbolic:
\[
Artanh~x=\frac{1+x}{1-x},
~-1 \lt x \lt 1
\]