Cord Separates the Unit Disc. Normal Vector: \[ \underline{n}= \widehat{ \underline{e}_Q-\underline{e}_P } = \underline{f}_Q-\underline{f}_P = \begin{pmatrix} \sin{\theta_P}-\sin{\theta_Q}\\cos{\theta_Q}-\cos{\theta_P} \end{pmatrix} \] Equation: \[ (\sin{\theta_P}-\sin{\theta_Q})(x-\cos{\theta_P}) + (\cos{\theta_Q}-\cos{\theta_P})(y-\sin{\theta_P}) = 0 \] Or: \[ (\sin{\theta_P}-\sin{\theta_Q})x + (\cos{\theta_Q}-\cos{\theta_P})y = \] \[ (\sin{\theta_P}-\sin{\theta_Q})\cos{\theta_P} + (\cos{\theta_Q}-\cos{\theta_P})\sin{\theta_P} = \] \[ \sin{\theta_Q}\cos{\theta_P} + \cos{\theta_Q}\sin{\theta_P} = \] \[ \sin{(\theta_Q+\theta_P)} \] Thus: \[ (\sin{\theta_P}-\sin{\theta_Q})x + (\cos{\theta_Q}-\cos{\theta_P})y = \sin{(\theta_Q+\theta_P)} \]