Focus of Cord. Tangents of Circle in P, resp. Q: \[ \begin{pmatrix}x\\y\end{pmatrix} = \underline{e}_P+t~\underline{f}_P, \quad \begin{pmatrix}x\\y\end{pmatrix} = \underline{e}_Q+s~\underline{f}_Q \] Intersects, if and only if: $\theta_P \neq \theta_Q$, when: \[ t ~\underline{f}_P-s~\underline{f}_Q = \underline{e}_Q-\underline{e}_P \] Multiply with $\underline{e}_P$, $\underline{e}_P \cdot~ \underline{f}_P=0$: \[ s~ \underline{f}_Q \cdot~ \underline{e}_P = (\underline{e}_P-\underline{e}_Q)\cdot~ \underline{e}_P \quad \Leftrightarrow \quad s=\frac{ \cos{\theta}-1 }{ \sin{\theta} } \] Multiply with $\underline{e}_Q$, $\underline{e}_Q \cdot~ \underline{f}_Q=0$: \[ t~ \underline{f}_P \cdot~ \underline{e}_Q = (\underline{e}_Q-\underline{e}_P)\cdot~ \underline{e}_Q \quad \Leftrightarrow \quad t=\frac{ 1-\cos{\theta} }{ \sin{\theta} } =-s \] Point of Intersection: \[ \begin{pmatrix}x\\y\end{pmatrix} = \underline{e}_P - \frac{ 1-\cos{\theta} }{ \sin{\theta} } \underline{f}_P \] Or: \[ \begin{pmatrix}x\\y\end{pmatrix} = \underline{e}_Q - \frac{ 1-\cos{\theta} }{ \sin{\theta} } \underline{f}_Q \] Double angle formulas: \[ t=-s= \frac{ 2 \sin^2{\frac{\theta}{2}} }{ 2\sin{\frac{\theta}{2}}\cos{\frac{\theta}{2}} } = \tan{\frac{\theta}{2}} \]
@Image Klein.Focus.svg height=100px | @Image Klein.Focus.Details.svg height=100px |