Kleins Model

Tangent in Point $(R,\theta)$: \[ \begin{pmatrix} x-R\cos{\theta}\\ y-R\sin{\theta}\\ \end{pmatrix} \cdot \begin{pmatrix} \cos{\theta}\\ \sin{\theta}\\ \end{pmatrix} =0 \quad \Leftrightarrow \] \[ \cos{\theta}x+\sin{\theta}y=R \] Tangents in $P \sim (R,\theta_P)$, resp. $Q \sim (R,\theta_Q)$: \[ \begin{Bmatrix} \cos{\theta_p}x+\sin{\theta_p}y&=&R\\ \cos{\theta_q}x+\sin{\theta_q}y&=&R\\ \end{Bmatrix} \] Cramer: \[ \begin{pmatrix} x\\y \end{pmatrix} = \frac{1} { \begin{vmatrix} \cos{\theta_p}&\sin{\theta_p}\\ \cos{\theta_q}&\sin{\theta_q}\\ \end{vmatrix} } \begin{pmatrix} \begin{vmatrix} R&\sin{\theta_p}\\ R&\sin{\theta_q}\\ \end{vmatrix} \\\\ \begin{vmatrix} \cos{\theta_p}&R\\ \cos{\theta_q}&R\\ \end{vmatrix} \end{pmatrix} = \] \[ \frac{R} { \cos{\theta_p}\sin{\theta_q}-\cos{\theta_q}\sin{\theta_p} } \begin{pmatrix} \sin{\theta_q}-\sin{\theta_p} \\ \cos{\theta_p}-\cos{\theta_q} \end{pmatrix} = \] \[ \frac{R} { \sin{(\theta_q-\theta_p)} } \begin{pmatrix} \sin{\theta_q}-\sin{\theta_p} \\ \cos{\theta_p}-\cos{\theta_q} \end{pmatrix} \] @Code Fig.tikz.tex height=300px
@Image Fig.svg 300px 300px