A Poop of Thickness $d$ on a Circle of radius $r$ Rolling on a Line.
Parametrization:
\[
\underline{r}(t)
=
\begin{pmatrix}
x(t)\\y(t)
\end{pmatrix}
=
\begin{pmatrix}
rt-d\sin{t}
\\
r+d\cos{t}
\end{pmatrix}
=
r
\begin{pmatrix}
(t-\lambda\sin{t})
\\
(1+\lambda \cos{t})
\end{pmatrix}
\]
Derivatives:
\[
\underline{r}'(t)
=
\underline{v}(t)
=
\begin{pmatrix}
x'(t)\\y'(t)
\end{pmatrix}
=
r
\begin{pmatrix}
(1-\lambda)\cos{t}
\\
-\lambda\sin{t}
\end{pmatrix},
\qquad
\underline{r}''(t)
=
\underline{a}(t)
=
\begin{pmatrix}
x''(t)\\y''(t)
\end{pmatrix}
=
r\lambda
\begin{pmatrix}
\sin{t}
\\
-\cos{t}
\end{pmatrix}
\]
Fix $t-t_0=1$. Taylor's formula of 2nd Order:
\[
\underline{r}(t)
\simeq
\underline{r}(t_0)
+
(t-t_0)
\underline{r}'(t_0)
+
\frac{1}{2}(t-t_0)^2
\underline{r}'(t_0)
\]