A Poop of Thickness $d$ on a Circle of radius $r$ Rolling on a Line.
Parametrization:
\[ \underline{r}(t) = \begin{pmatrix} x(t)\\y(t) \end{pmatrix} = \begin{pmatrix} rt-d\sin{t} \\ r+d\cos{t} \end{pmatrix} = r \begin{pmatrix} (t-\lambda\sin{t}) \\ (1+\lambda \cos{t}) \end{pmatrix} \] Derivatives:
\[ \underline{r}'(t) = \underline{v}(t) = \begin{pmatrix} x'(t)\\y'(t) \end{pmatrix} = r \begin{pmatrix} (1-\lambda)\cos{t} \\ -\lambda\sin{t} \end{pmatrix}, \qquad \underline{r}''(t) = \underline{a}(t) = \begin{pmatrix} x''(t)\\y''(t) \end{pmatrix} = r\lambda \begin{pmatrix} \sin{t} \\ -\cos{t} \end{pmatrix} \] Fix $t-t_0=1$. Taylor's formula of 2nd Order: \[ \underline{r}(t) \simeq \underline{r}(t_0) + (t-t_0) \underline{r}'(t_0) + \frac{1}{2}(t-t_0)^2 \underline{r}'(t_0) \]