SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Derivação
Life is a mystery to be lived.
Not a problem to be solved.
Søren Kierkegaard.
< Taylor | Simétrica | Resíduos >

Aproximação Melhor

  • \(n=2p+1:\)
    \(f(t+\varepsilon) -f(t-\varepsilon)\simeq\)
    \(2\sum_{j=0}^{p} \frac{ \varepsilon^{2j+1} }{(2j+1)!} f^{(2j+1)} (t)=\)
    \(2 \varepsilon f\prime(t)+ 2 \frac{\varepsilon^3 }{3!}f^{(3)}(t)+...+2\frac{\varepsilon^{2p+1}}{(2p+1)!} f^{(2p+1)}(t)\)
  • Isolando \(f\prime(t):\)
    \(f\prime(t)\)
    \(\frac{ f(t+\varepsilon) -f(t-\varepsilon) }{ 2 \varepsilon }+\frac{\varepsilon^2}{3!} f^{(3)}(t)+...+\frac{\varepsilon^{2p}}{(2p+1)!} f^{(2p+1)}(t)=\)
    \(\frac{ f(t+\varepsilon) -f(t-\varepsilon) }{ 2 \varepsilon } +o(\varepsilon^2)\)

    Python Listing: ../../../Code/Derivatives.py.
    def d_f(f,x,eps=1.0E-6):
        #Better
        return (f(x+eps)-f(x-eps))/(2.0*eps)
    
    
  • Duas chamadas da função
< Taylor | Simétrica | Resíduos >
Messages:
0 secs.