SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Vetores
Detetesto as vitimas
Quando elas respeitam os seus carrascos.
Jean Paul Sartre
< Projeção | Atividades | Matrices >

Atividades 5:

  1. Arquivo N01.py: Representa em Python os vetores como Python lists:
    \(\underline{\textbf{v}}_0= \left(\begin{array}{c} 1\\1\\1\\1 \end{array}\right) \quad \underline{\textbf{v}}_1= \left(\begin{array}{c} 1\\-1\\1\\-1 \end{array}\right), \quad \underline{\textbf{v}}_2= \left(\begin{array}{c} 1\\1\\-1\\-1 \end{array}\right), \quad \underline{\textbf{v}}_3= \left(\begin{array}{c} -1\\1\\1\\-1 \end{array}\right), \)
    Python Listing: N01.py.
    #Matrix with Vectors in rows
    v=[
        [ 1.0, 1.0, 1.0, 1.0,],
        [ 1.0,-1.0, 1.0,-1.0,],
        [ 1.0, 1.0,-1.0,-1.0,],
        [-1.0, 1.0, 1.0,-1.0,],
    ]
    
  2. Arquivo N02.py: Usando um laço duplo, calcule os vetores: \(\underline{\textbf{v}}_i +\underline{\textbf{v}}_j, \quad i,j \in \{0,1,2,3\}.\)
    Python Listing: N02.py.
    from Vector import *
    
    from N01 import *
    
    for i in range( len(v) ):
        for j in range( len(v) ):
            w=Vectors_Add(v[i],v[j])
            print i,j,v[i],'+',v[j],'=',w
    
    0 0 [1.0, 1.0, 1.0, 1.0] + [1.0, 1.0, 1.0, 1.0] = [2.0, 2.0, 2.0, 2.0]
    0 1 [1.0, 1.0, 1.0, 1.0] + [1.0, -1.0, 1.0, -1.0] = [2.0, 0.0, 2.0, 0.0]
    0 2 [1.0, 1.0, 1.0, 1.0] + [1.0, 1.0, -1.0, -1.0] = [2.0, 2.0, 0.0, 0.0]
    0 3 [1.0, 1.0, 1.0, 1.0] + [-1.0, 1.0, 1.0, -1.0] = [0.0, 2.0, 2.0, 0.0]
    1 0 [1.0, -1.0, 1.0, -1.0] + [1.0, 1.0, 1.0, 1.0] = [2.0, 0.0, 2.0, 0.0]
    1 1 [1.0, -1.0, 1.0, -1.0] + [1.0, -1.0, 1.0, -1.0] = [2.0, -2.0, 2.0, -2.0]
    1 2 [1.0, -1.0, 1.0, -1.0] + [1.0, 1.0, -1.0, -1.0] = [2.0, 0.0, 0.0, -2.0]
    1 3 [1.0, -1.0, 1.0, -1.0] + [-1.0, 1.0, 1.0, -1.0] = [0.0, 0.0, 2.0, -2.0]
    2 0 [1.0, 1.0, -1.0, -1.0] + [1.0, 1.0, 1.0, 1.0] = [2.0, 2.0, 0.0, 0.0]
    2 1 [1.0, 1.0, -1.0, -1.0] + [1.0, -1.0, 1.0, -1.0] = [2.0, 0.0, 0.0, -2.0]
    2 2 [1.0, 1.0, -1.0, -1.0] + [1.0, 1.0, -1.0, -1.0] = [2.0, 2.0, -2.0, -2.0]
    2 3 [1.0, 1.0, -1.0, -1.0] + [-1.0, 1.0, 1.0, -1.0] = [0.0, 2.0, 0.0, -2.0]
    3 0 [-1.0, 1.0, 1.0, -1.0] + [1.0, 1.0, 1.0, 1.0] = [0.0, 2.0, 2.0, 0.0]
    3 1 [-1.0, 1.0, 1.0, -1.0] + [1.0, -1.0, 1.0, -1.0] = [0.0, 0.0, 2.0, -2.0]
    3 2 [-1.0, 1.0, 1.0, -1.0] + [1.0, 1.0, -1.0, -1.0] = [0.0, 2.0, 0.0, -2.0]
    3 3 [-1.0, 1.0, 1.0, -1.0] + [-1.0, 1.0, 1.0, -1.0] = [-2.0, 2.0, 2.0, -2.0]
    
    
    Output from: /usr/bin/python N02.py
  3. Arquivo N03.py: Usando um laço duplo, calcule os vetores: \(\underline{\textbf{v}}_i -\underline{\textbf{v}}_j, \quad i,j \in \{0,1,2,3\}.\)
  4. Arquivo N04.py: Calcular os produtos escalarares: \(\underline{\textbf{v}}_i \cdot \underline{\textbf{v}}_j, \quad i,j \in \{0,1,2,3\}.\)
  5. Arquivo N05.py: Calcular as projeções de \(\underline{\textbf{v}}_i\) em \(\underline{\textbf{v}}_j,\) \(i,j \in \{0,1,2,3\}.\)
Verifique os cálculus manualmente!
< Projeção | Atividades | Matrices >
Messages:
0 secs.