|
SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br
|
|
Deus não se preocupe das nossas dificuldades matemáticas.
Ele integra empiricamente.
Einstein.
|
Atividades 6:
- Arquivo N01.py: Representa em Python as matrices como Python lists of lists:
\(\underline{\underline{\textbf{A}}}_0= \left(\begin{array}{cccc} 1& 1& 1& 1\\1&-1& 1&-1\\1& 1&-1&-1\\-1& 1& 1&-1\\\end{array}\right),\)
\(\underline{\underline{\textbf{A}}}_1= \left(\begin{array}{cccc}1& 2& 4& 8\\1&-1& 1&-1\\1&-2& 4&-8\\1& 1& 1& 1\\\end{array}\right),\)
\(\underline{\underline{\textbf{A}}}_2=\left(\begin{array}{cccc}1& 1& 1& 1\\1&-1& 1&-1\\1& 2& 4& 8\\1& 3& 9&27\\\end{array}\right),\)
\(\underline{\underline{\textbf{A}}}_3=\left(\begin{array}{cccc}1& 1& 1& 1\\1& 2& 4& 8\\1& 3& 9&27\\1& 4&16&64\\\end{array}\right),\)
Python Listing: N01.py.
from Matrix import *
#Lista de matrices
A=[
[
[ 1.0, 1.0, 1.0, 1.0,],
[ 1.0,-1.0, 1.0,-1.0,],
[ 1.0, 1.0,-1.0,-1.0,],
[-1.0, 1.0, 1.0,-1.0,],
],
Matrix_Vandermonte([ 2.0,-1.0,-2.0, 1.0 ]),
Matrix_Vandermonte([ 1.0,-1.0, 2.0, 3.0 ]),
Matrix_Vandermonte([ 1.0, 2.0, 3.0, 4.0 ]),
]
|
-
Arquivo N02.py: Usando um laço duplo, calcule as matrices:
\(\underline{\underline{\textbf{A}}}_i +\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}.\)
Python Listing: N02.py.
from Matrix import *
from N01 import *
for i in range( len(A) ):
for j in range( len(A) ):
print i,j,":"
B=Matrices_Add(A[i],A[j])
Matrix_Print(A[i])
print "+"
Matrix_Print(A[j])
print "="
Matrix_Print(B)
|
-
Arquivo N03.py: Usando um laço duplo, calcule os vetores:
\(\underline{\underline{\textbf{A}}}_i -\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}.\)
-
Arquivo N04.py: Calcular os produtos:
\(\underline{\underline{\textbf{A}}}_i ~\underline{\underline{\textbf{A}}}_j\)
e
\(\underline{\underline{\textbf{A}}}_j ~\underline{\underline{\textbf{A}}}_i, ~ i,j \in \{0,1,2,3\}.\)
-
Arquivo N05.py: Calcular a comutação das matrices
\(\underline{\underline{\textbf{A}}}_i ;] e [; \underline{\underline{\textbf{A}}}_j\)
\(\underline{\underline{\textbf{D}}}_{ij}=\underline{\underline{\textbf{A}}}_i~\underline{\underline{\textbf{A}}}_j-\underline{\underline{\textbf{A}}}_j~\underline{\underline{\textbf{A}}}_i,~ i,j \in \{0,1,2,3\}.\)
Verifique os cálculus manualmente!
|
Messages:
0 secs.
|