SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Matrices
Deus não se preocupe das nossas dificuldades matemáticas.
Ele integra empiricamente.
Einstein.

Atividades 6:

  1. Arquivo N01.py: Representa em Python as matrices como Python lists of lists:
    \(\underline{\underline{\textbf{A}}}_0= \left(\begin{array}{cccc} 1& 1& 1& 1\\1&-1& 1&-1\\1& 1&-1&-1\\-1& 1& 1&-1\\\end{array}\right),\) \(\underline{\underline{\textbf{A}}}_1= \left(\begin{array}{cccc}1& 2& 4& 8\\1&-1& 1&-1\\1&-2& 4&-8\\1& 1& 1& 1\\\end{array}\right),\) \(\underline{\underline{\textbf{A}}}_2=\left(\begin{array}{cccc}1& 1& 1& 1\\1&-1& 1&-1\\1& 2& 4& 8\\1& 3& 9&27\\\end{array}\right),\) \(\underline{\underline{\textbf{A}}}_3=\left(\begin{array}{cccc}1& 1& 1& 1\\1& 2& 4& 8\\1& 3& 9&27\\1& 4&16&64\\\end{array}\right),\)
    Python Listing: N01.py.
    from Matrix import *
    
    #Lista de matrices
    A=[
        [
            [ 1.0, 1.0, 1.0, 1.0,],
            [ 1.0,-1.0, 1.0,-1.0,],
            [ 1.0, 1.0,-1.0,-1.0,],
            [-1.0, 1.0, 1.0,-1.0,],
        ],
        Matrix_Vandermonte([ 2.0,-1.0,-2.0, 1.0 ]),
        Matrix_Vandermonte([ 1.0,-1.0, 2.0, 3.0 ]),
        Matrix_Vandermonte([ 1.0, 2.0, 3.0, 4.0 ]),
    ]
    
  2. Arquivo N02.py: Usando um laço duplo, calcule as matrices: \(\underline{\underline{\textbf{A}}}_i +\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}.\)
    Python Listing: N02.py.
    from Matrix import *
    
    from N01 import *
    
    for i in range( len(A) ):
        for j in range( len(A) ):
            print i,j,":"
            B=Matrices_Add(A[i],A[j])
            Matrix_Print(A[i])
            print "+"
            Matrix_Print(A[j])
            print "="
            Matrix_Print(B)
    
  3. Arquivo N03.py: Usando um laço duplo, calcule os vetores: \(\underline{\underline{\textbf{A}}}_i -\underline{\underline{\textbf{A}}}_j, ~ i,j \in \{0,1,2,3\}.\)
  4. Arquivo N04.py: Calcular os produtos: \(\underline{\underline{\textbf{A}}}_i ~\underline{\underline{\textbf{A}}}_j\) e \(\underline{\underline{\textbf{A}}}_j ~\underline{\underline{\textbf{A}}}_i, ~ i,j \in \{0,1,2,3\}.\)
  5. Arquivo N05.py: Calcular a comutação das matrices \(\underline{\underline{\textbf{A}}}_i ;] e [; \underline{\underline{\textbf{A}}}_j\)
    \(\underline{\underline{\textbf{D}}}_{ij}=\underline{\underline{\textbf{A}}}_i~\underline{\underline{\textbf{A}}}_j-\underline{\underline{\textbf{A}}}_j~\underline{\underline{\textbf{A}}}_i,~ i,j \in \{0,1,2,3\}.\)
Verifique os cálculus manualmente!
Messages:
0 secs.