SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Formulas
Detetesto as vitimas
Quando elas respeitam os seus carrascos.
Jean Paul Sartre
< Notable Sets | Fractions | Theorems >

Fractions and Stuff

LaTeX Listing: Fractions.tex. PDF   ZIP*  
Simple fraction:

\[
   x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}
\]

Formula with fractions:
\[
   \varphi_0(t)
   =
   \varphi_2(t)
   \int \frac{\varphi_1(t) q(t)}{W(t)}~dt
   -
   \varphi_1(t)
   \int \frac{\varphi_2(t) q(t)}{W(t)}~dt
\]

Fractions in matrices:   
\[
   A
   =
   \begin{pmatrix}
     \frac{1}{\sqrt{2}}
     &
     -\frac{1}{\sqrt{2}}
     \\     
     \frac{1}{\sqrt{2}}
     &
     \frac{1}{\sqrt{2}}
     \\
   \end{pmatrix}
\]

Increase size with $\backslash$displaystyle:
\[
   A
   =
   \begin{pmatrix}
     \displaystyle \frac{1}{\sqrt{2}}
     &
     \displaystyle -\frac{1}{\sqrt{2}}
     \\     
     \displaystyle \frac{1}{\sqrt{2}}
     &
     \displaystyle \frac{1}{\sqrt{2}}
     \\
   \end{pmatrix}
\]


$\overset{\displaystyle Max}{v \in X}$


$_{b}^{a}$

$\stackrel{a}{b}$

$\overline{\Omega}$

$\underline{W}$


$\overset{\circ}{\Omega}$

$\underset{\sim}W$

$\sideset{_1^2}{_3^4}\prod$
Simple fraction: \[ x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} \] Formula with fractions: \[ \varphi_0(t) = \varphi_2(t) \int \frac{\varphi_1(t) q(t)}{W(t)}~dt - \varphi_1(t) \int \frac{\varphi_2(t) q(t)}{W(t)}~dt \] Fractions in matrices: \[ A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \end{pmatrix} \] Increase size with $\backslash$displaystyle: \[ A = \begin{pmatrix} \displaystyle \frac{1}{\sqrt{2}} & \displaystyle -\frac{1}{\sqrt{2}} \\ \displaystyle \frac{1}{\sqrt{2}} & \displaystyle \frac{1}{\sqrt{2}} \\ \end{pmatrix} \] $\overset{\displaystyle Max}{v \in X}$ $_{b}^{a}$ $\stackrel{a}{b}$ $\overline{\Omega}$ $\underline{W}$ $\overset{\circ}{\Omega}$ $\underset{\sim}W$ $\sideset{_1^2}{_3^4}\prod$
< Notable Sets | Fractions | Theorems >
Messages:
0 secs.