SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Plot
A seriedade dos acontecimentos da minha época.
Me enche de esperança.
Karl Marx
< Parabolas | Trochoids and Cycloids | Taylor's Formula >

Trochoids and Cycloids

Circle rolling on the $x$-axis, $r>0$, $b \in \mathbb{R}$: \[ \underline{r}(t) = \begin{pmatrix}x(t)\\y(t)\end{pmatrix} = \begin{pmatrix} r t-b\sin{t} \\ r-b\cos{t} \end{pmatrix} = r \begin{pmatrix} t-\lambda \sin{t} \\ 1-\lambda\cos{t} \end{pmatrix}, \] Dimensionless parameter: $\lambda=\frac{b}{r}\in \mathbb{R}$. \[ \frac{1}{r} \underline{r}(t) = \underbrace { \begin{pmatrix} t \\ 1 \end{pmatrix} }_\text{$\underline{R}(t)$} -\lambda~ \underbrace { \begin{pmatrix} \sin{t} \\ \cos{t} \end{pmatrix} }_\text{$\underline{p}(t)$} \]

  1. TiKZ Listing: 1-Fig.tikz.tex. PDF   PNG   SVG   ZIP*  
    \documentclass[]{standalone}
    \usepackage{tikz}
    \usepackage{pgfplots}
    \usetikzlibrary{calc} 
    \pgfplotsset{compat=1.14} 
    
    \usepackage{xcolor}
    
    %Draw Trochoids and Cycloid
    %r fixed, b or Lambda varying
           
    \tikzstyle{curves}=[
       smooth,samples=200,
       variable=\t,
       domain=0:4*pi,
    ]
    
    %Radius of rolling circle
    \tikzmath{\r=1;}
       
    %Number of curves to draw.
    \tikzmath{\N=10;}
       
    %Relative position of rollong point. Lambda=\pm 1: cycloid
    \tikzmath{\LambdaMin=-2.0;}
    \tikzmath{\LambdaMax=2.0;}
    %Steps of aLambda
    \tikzmath{\dLambda=(\LambdaMax-\LambdaMin)/\N;}
      
    %Variation of colors - color in [0,100].
    \tikzmath{\dcolor=100/\N;}
    
    
    \begin{document}
       \begin{tikzpicture}
           %Coordinate system
           \draw[-latex] (-\r,0) -- (4*pi+\r*\LambdaMax,0) node [right] {$x$};
           \draw[-latex] (0,-\r) -- (0,\r*\LambdaMax) node [above] {$y$};
                  
           \foreach \n in {0,1,...,\N}
           {
               %\Lambda and color, \color
               \tikzmath{\Lambda=\LambdaMin+\n*\dLambda;}
               \tikzmath{\color=\n*\dcolor;}
              
               %cos and sin expects degrees: deg(\t)
               \draw
                  [
                     curves,
                     %Convex combination of colors
                     color=orange!\color!cyan
                  ]
                  plot (
                     { \r*(  \t-\Lambda*sin(deg(\t))  ) },
                     { \r*(  1-\Lambda*cos(deg(\t)) }
                  );
           }
           
           \draw
              [
                 curves,thick,
                 color=blue
              ]
              plot (  
                 { \r*(  \t-sin(deg(\t))  ) },
                 { \r*(  1-cos(deg(\t)) }
              );
          
           
           
       \end{tikzpicture}
    \end{document}
    
  2. Tangent or Velocity: \[ \frac{1}{r} \underline{r}'(t) = \begin{pmatrix} 1-\lambda \cos{t} \\ \lambda\sin{t} \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix} - \lambda \begin{pmatrix} \cos{t} \\ -\sin{t} \end{pmatrix} = \underline{i} - \lambda\underline{q}(t) \] Unit vector: \[ \underline{q}(t) = \begin{pmatrix} \cos{t} \\ -\sin{t} \end{pmatrix} \perp \underline{p}(t) \]
    TiKZ Listing: 2-Fig.tikz.tex. PDF   PNG   SVG   ZIP*  
    \documentclass[]{standalone}
    \usepackage{tikz}
    \usepackage{pgfplots}
    \usetikzlibrary{calc} 
    \pgfplotsset{compat=1.14} 
    
    \usepackage{xcolor}
    
    %Draw Trochoids and Cycloid
    %r fixed, b or Lambda varying
           
    \tikzstyle{curves}=[
       smooth,samples=200,
       variable=\t,
       domain=0:4*pi,
       color=blue
    ]
    
    \tikzstyle{rolling}=[
       color=red
    ]
    
    %Radius of rolling circle
    \tikzmath{\r=1;}
       
    %Number of curves to draw.
    \tikzmath{\N=10;}
       
    %Relative position of rollong point. Lambda=\pm 1: cycloid
    \tikzmath{\LambdaMin=0.0;}
    \tikzmath{\LambdaMax=2.0;}
    
    %Steps of aLambda
    \tikzmath{\dLambda=(\LambdaMax-\LambdaMin)/\N;}
      
    %Variation of colors - color in [0,100].
    \tikzmath{\dcolor=100/\N;}
    
    \newcommand{\DrawTrochoid}[2]
    {
       %cos and sin expects degrees: deg(\t)
       %Alternative: tikzpicture option trig format=rad
       \draw[curves,#2]
           plot
           (
               { \r*(  \t-#1*sin(deg(\t))  ) },
               { \r*(  1 -#1*cos(deg(\t))  ) }
           );
    }
    
    %Fixed time - draw rolling
    \tikzmath{\T=4*pi/3;}
       
    \begin{document}
       \begin{tikzpicture}
           %Coordinate system
           \draw[-latex] (-\r,0) -- (4*pi+0.5*\r*\LambdaMax,0) node [right] {$x$};
           \draw[-latex] (0,-\r) -- (0,1.5*\r*\LambdaMax) node [above] {$y$};
                  
           \foreach \n in {0,1,...,\N}
           {
               %\Lambda and color, \color
               \tikzmath{\Lambda=\LambdaMin+\n*\dLambda;}
               \tikzmath{\col=\n*\dcolor;}
              
               \DrawTrochoid{\Lambda}{color=blue!\col!cyan,thin} 
           }
           
           %Draw cycloid
           \tikzmath{\Lambda=1;}
           \DrawTrochoid{\Lambda}{color=blue,thick}
          
           \tikzmath{\Angle=deg(\T);}
           \tikzmath{\xt=\r*(   \T-\Lambda*sin(\Angle)   );}
           \tikzmath{\yt=\r*(    1-\Lambda*cos(\Angle)   );}
       
           \coordinate (RCycloid) at (\xt,\yt);
           \filldraw[curves] (RCycloid) circle(1pt);
          
           %Rolling center
           \tikzmath{\xR=\r*\T;}
           \tikzmath{\yR=\r;}
           \coordinate (Rolling) at (\xR,\yR);
           
           \filldraw[rolling] (Rolling) circle(1pt);
           \draw[rolling] (Rolling) circle(\r);
          
           %Point on last trochoid
           \tikzmath{\px=-sin(\Angle);}
           \tikzmath{\py=-cos(\Angle);}
           \coordinate (p) at (\px,\py);
           \coordinate (q) at (\py,-\px);
           
           \coordinate (RTrochoid) at ($(Rolling)+\r*\LambdaMax*(p)$);
           \draw[-latex,rolling] (RCycloid)-- +(q);
           \draw[-latex,rolling] (Rolling)-- (RCycloid);
           \draw[-latex,curves] (RCycloid)-- (RTrochoid);
          
           %Tangent
           \tikzmath{\drx=\r*(1-\LambdaMax*cos(\Angle));}
           \tikzmath{\dry=\r*\LambdaMax*sin(\Angle);}
           \coordinate (dr) at (\drx,\dry);
           
           \draw[-latex,curves] (RTrochoid)-- +(dr);
       \end{tikzpicture}
    \end{document}
    
  3. \[ \underline{p}(t)= \begin{pmatrix} \sin{t} \\ \cos{t} \end{pmatrix}, \qquad \underline{q}(t)= \begin{pmatrix} \cos{t} \\ -\sin{t} \end{pmatrix} \] Not a RHS: \[ \underline{\widehat q}(t)=\underline{p}(t), \qquad \underline{\widehat p}(t)=-\underline{q}(t) \] \[ \underline{p}'(t)=\underline{q}(t), \qquad \underline{q}'(t)=-\underline{p}(t) \]
  4. Acceleration: \[ \frac{1}{r} \underline{r}''(t) = \lambda \begin{pmatrix} \sin{t} \\ \cos{t} \end{pmatrix} = \lambda\underline{p}(t) \]
< Parabolas | Trochoids and Cycloids | Taylor's Formula >
Messages:
0 secs.