SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Other Curves
E se Eva tinha optado pela cobra?
Facebook.

Rosettes

Formulas
$\underline{\mathbf{r}}(t)=\cos{nt}~\underline{\mathbf{e}}(t)$ $\underline{\mathbf{r}}'(t)=-n \sin{nt}~\underline{\mathbf{e}}(t)+ \cos{nt}~\underline{\mathbf{f}}(t)$
$\underline{\mathbf{r}}''(t)=-(n^2+1) \cos{nt}~\underline{\mathbf{e}}(t)-2n\sin{nt}~\underline{\mathbf{f}}(t)$ $\widehat{\underline{\mathbf{r}}}'(t)=-\cos{nt}~\underline{\mathbf{e}}(t)-n \sin{nt}~\underline{\mathbf{f}}(t)$
$v(t)^2=n^2\sin^2{n t}+\cos^2{n t}$ $D(t)=n^2+v(t)^2$
$\frac{d}{dt} v(t)^2=n(2n^2-1) \sin{n t}\cos{n t}$
$\underline{\mathbf{t}}(t)=\frac{-n \sin{nt}~\underline{\mathbf{e}}(t)+ \cos{nt}~\underline{\mathbf{f}}(t)}{ v(t)}$ $\underline{\mathbf{n}}(t)=\frac{-\cos{nt}~\underline{\mathbf{e}}(t)-n \sin{nt}~\underline{\mathbf{f}}(t)}{ v(t)}$
$\psi(t)=\frac{ n^2+v(t)^2 }{v(t)^2}$ $\varphi(t)=\frac{v(t)^2}{ n^2+v(t)^2}$
$\kappa(t)=\frac{ n^2+v(t)^2 }{v(t)^3}$ $\rho(t)=\frac{v(t)^3}{ n^2+v(t)^2 }$
$\underline{\mathbf{c}}(t)=\frac{ n^2 \cos{nt}\underline{\mathbf{e}}(t) -n \sin{nt}\underline{\mathbf{f}}(t)}{ n^2+v^2 }$
$\underline{\mathbf{c}}'(t)=-$
$\rho'(t)=(3n^2+v(t)^2)\frac{v(t)^2v'(t)}{ (n^2+v(t)^2)^2 }$
PDF: Rose
Parameters
Attr Name Default Current Values
a $n$ 1.000000 -
Settings
Delay:
Type:
Every:
Use SVG Image tags:
Components
Curves
r:
r':
r'':
c:
c':
Functions
R:
Det:
\(\psi\):
\(\varphi\):
\(\kappa\):
\(\rho\):
Browse SVGs: Rose
Legends 4_Evolute 3_d2R 5_dEvolute 2_d1R 1_d0R
Rose: Num n=2.0
Rose: Num n=3.0
Rose: Num n=4.0
Rose: Num n=5.0
Rose: Num n=6.0
Rose: Num n=7.0
Legends 12_Phi 11_Psi 02_Det 14_Rho 01_v2 13_Kappa
Rose: Num n=2.0
Rose: Num n=3.0
Rose: Num n=4.0
Rose: Num n=5.0
Rose: Num n=6.0
Rose: Num n=7.0
Messages:
0 secs.