SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Roulettes
O dia que bosta valesse ouro.
Os pobres todos nascerĂ£o sem c*.
Grafitti.
< Trochoids | Epicycloid | Epitrochoid >

Epicycloid: Rolling a Circle on the outside of a Circle

Formulas
$\underline{\mathbf{r}}(t)=r\left( \omega\underline{\mathbf{e}}(t) - \underline{\mathbf{e}}(\omega t) \right)$ $\underline{\mathbf{r}}'(t)=r\omega\left( \underline{\mathbf{f}}(t) - \underline{\mathbf{f}}(\omega t) \right)$
$\underline{\mathbf{r}}''(t)=r\omega\left( - \underline{\mathbf{e}}(t) + \omega\underline{\mathbf{e}}(\omega t) \right)$ $\widehat{\underline{\mathbf{r}}}'(t)=r\omega\left( - \underline{\mathbf{e}}(t) + \underline{\mathbf{e}}(\omega t) \right)$
$v(t)^2=2r^2\omega^2\left( 1- \cos{ (\omega-1)t} \right)$ $D(t)=r^2\omega^2(1+ \omega)(1 -\cos{ (\omega-1)t})$
$\frac{d}{dt} v(t)^2=2r^2\omega^2(\omega-1)\sin{ (\omega-1)t}$ $D'(t)=r^2\omega^2(\omega^2-1) \sin{(\omega-1)t}$
$\underline{\mathbf{t}}(t)=\frac{ \underline{\mathbf{f}}(t) - \underline{\mathbf{f}}(\omega t) }{ \sqrt{ 2(1- \cos{ (\omega-1)t}) }}$ $\underline{\mathbf{n}}(t)=-\frac{ \underline{\mathbf{e}}(t) - \underline{\mathbf{e}}(\omega t) }{ \sqrt{ 2(1- \cos{ (\omega-1)t}) }}$
$\psi(t)=\frac{\omega+1}=\frac{R+2r}{2r}$ $\varphi(t)=\frac{2}{\omega+1}=\frac{2r}{R+2r}$
$\kappa(t)=\frac{\omega+1}{2\sqrt{2}r\omega} \cdot \frac{1}{\sqrt{1 -\cos{ (\omega-1)t}}}$ $\rho(t)=\frac{2\sqrt{2}r\omega}{\omega+1} \cdot \sqrt{1-\cos{ (\omega-1)t}}$
$\underline{\mathbf{c}}(t)=\frac{Rr}{R+2r}\left( \omega\underline{\mathbf{e}}(t) + \underline{\mathbf{e}}(\omega t) \right)$
$\underline{\mathbf{c}}'(t)=\frac{Rr}{R+2r}\omega\left( \underline{\mathbf{f}}(t) + \underline{\mathbf{f}}(\omega t) \right)$
$\rho'(t)=\sqrt{2}r\omega\cdot \frac{\omega-1 }{\omega+1} \cdot\frac{\sin{(\omega-1)t}}{\sqrt{1 -\cos{ (\omega-1)t}}}=\pm 2r\omega\cdot \frac{\omega-1 }{\omega+1} \cdot\cos{\left( \frac{\omega-1}{2} t \right)}$
$\mathcal{S}=\left\{t \in \mathbb{R}~\left|~~2p\pi\frac{R}{r},~p \in \mathbb{Z}\right.\right\}$
$\mathcal{E}=\left\{t \in \mathbb{R}~~~\left|(2 p+1) \pi\frac{R}{r},~p \in \mathbb{Z}\right.\right\}$
$s(t)-s(0)=\frac{2r\omega}{\omega-1} \cdot \left(1-\cos{ \frac{\omega-1}{2} t}\right),~0 < t < \frac{2\pi}{\omega-1}$
PDF: Epicycloid
Parameters
Attr Name Default Current Values
RR $R$ 1.000000 1.0 1.0
r $r$ 1.000000 -
Settings
Delay:
Type:
Every:
Use SVG Image tags:
Components
Curves
r:
r':
r'':
c:
c':
Functions
R:
Det:
\(\psi\):
\(\varphi\):
\(\kappa\):
\(\rho\):
Browse SVGs: Epicycloid
Legends 4_Evolute 3_d2R 5_dEvolute 2_d1R 1_d0R
Epicycloid: Num R=1.0 r=0.166666666667
Epicycloid: Num R=1.0 r=0.2
Epicycloid: Num R=1.0 r=0.25
Epicycloid: Num R=1.0 r=0.333333333333
Epicycloid: Num R=1.0 r=0.5
Epicycloid: Num R=1.0 r=1.0
Epicycloid: Num R=1.0 r=2.0
Epicycloid: Num R=1.0 r=3.0
Epicycloid: Num R=1.0 r=4.0
Epicycloid: Num R=1.0 r=5.0
Epicycloid: Num R=1.0 r=6.0
Legends 12_Phi 11_Psi 02_Det 14_Rho 01_v2 13_Kappa
Epicycloid: Num R=1.0 r=0.166666666667
Epicycloid: Num R=1.0 r=0.2
Epicycloid: Num R=1.0 r=0.25
Epicycloid: Num R=1.0 r=0.333333333333
Epicycloid: Num R=1.0 r=0.5
Epicycloid: Num R=1.0 r=1.0
Epicycloid: Num R=1.0 r=2.0
Epicycloid: Num R=1.0 r=3.0
Epicycloid: Num R=1.0 r=4.0
Epicycloid: Num R=1.0 r=5.0
Epicycloid: Num R=1.0 r=6.0
< Trochoids | Epicycloid | Epitrochoid >
Messages:
0 secs.