SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Roulettes
Quando eu dou de comer aos pobres
Me chamam de santo
Quando eu pergunto por que eles são pobres
Me chamam de comunista
Dom Helder Câmera
< Epitrochoid | Hypocycloid | Hypotrochoid >

Hypocycloid: Rolling a Circle on the inside of a Circle

Formulas
$\underline{\mathbf{r}}(t)=r\left( \omega\underline{\mathbf{e}}(t) - \underline{\mathbf{p}}(\omega t) \right)$ $\underline{\mathbf{r}}'(t)=r\omega\left( \underline{\mathbf{f}}(t) + \underline{\mathbf{q}}(\omega t) \right)$
$\underline{\mathbf{r}}''(t)=r\omega\left( - \underline{\mathbf{e}}(t) + \omega\underline{\mathbf{p}}(\omega t) \right)$ $\widehat{\underline{\mathbf{r}}}'(t)=r\omega\left( - \underline{\mathbf{e}}(t) - \underline{\mathbf{p}}(\omega t) \right)$
$v(t)^2=2r^2\omega^2\left( 1-\cos{ (\omega+1)t} \right)$ $D(t)=r^2\omega^2(1- \omega)\left( 1-\cos{(\omega+1)t} \right)$
$\frac{d}{dt} v(t)^2=2r^2\omega^2(\omega+1)\sin{ (\omega+1)t}$ $D'(t)=r^2\omega^2(1- \omega^2)\sin{(\omega+1)t}$
$\underline{\mathbf{t}}(t)=\frac{1}{\sqrt{2}}\cdot \frac{\underline{\mathbf{f}}(t)+\underline{\mathbf{q}}(\omega t)}{ \sqrt{1- \cos{ (\omega+1)t}} }$ $\underline{\mathbf{n}}(t)=-\frac{1}{\sqrt{2}}\cdot \frac{\underline{\mathbf{e}}(t)+\underline{\mathbf{p}}(\omega t)}{ \sqrt{1- \cos{ (\omega+1)t}} }$
$\psi(t)=\frac{1-\omega}{2}=\frac{2r-R}{2r}$ $\varphi(t)=\frac{2}{1-\omega}=\frac{2r}{2r-R}$
$\kappa(t)=\frac{1}{2\sqrt{2}}\cdot \frac{1-\omega}{ r|\omega|}\cdot \frac{1}{\sqrt{1-\cos{ (\omega+1)t}}}$ $\rho(t)=2\sqrt{2} \cdot \frac{ r |\omega|}{1-\omega} \cdot\sqrt{1-\cos{ (\omega+1)t}}$
$\underline{\mathbf{c}}(t)=\frac{R}{R-2r}\left( (R-r)\underline{\mathbf{e}}(t) - r\underline{\mathbf{p}}(\omega t+\pi) \right)$
$\underline{\mathbf{c}}'(t)=\frac{1+\omega}{1-\omega}|\omega|\left( \underline{\mathbf{e}}(t)+\underline{\mathbf{p}}(\omega t) \right)$
$\rho'(t)=\sqrt{2} r |\omega| \cdot \frac{ 1+\omega}{1-\omega} \cdot\frac{\sin{ (\omega+1)t}}{\sqrt{1-\cos{ (\omega+1)t}}}$
PDF: Hypocycloid
Parameters
Attr Name Default Current Values
RR $R$ 3.000000 1.0 1.0
r $r$ 1.000000 -
Settings
Delay:
Type:
Every:
Use SVG Image tags:
Components
Curves
r:
r':
r'':
c:
c':
Functions
R:
Det:
\(\psi\):
\(\varphi\):
\(\kappa\):
\(\rho\):
Browse SVGs: Hypocycloid
Legends 4_Evolute 3_d2R 5_dEvolute 2_d1R 1_d0R
Hypocycloid: Num R=1.0 r=0.125
Hypocycloid: Num R=1.0 r=0.142857142857
Hypocycloid: Num R=1.0 r=0.166666666667
Hypocycloid: Num R=1.0 r=0.2
Hypocycloid: Num R=1.0 r=0.25
Hypocycloid: Num R=1.0 r=0.333333333333
Hypocycloid: Num R=1.0 r=2.0
Hypocycloid: Num R=1.0 r=3.0
Hypocycloid: Num R=1.0 r=4.0
Hypocycloid: Num R=1.0 r=5.0
Legends 12_Phi 11_Psi 02_Det 14_Rho 01_v2 13_Kappa
Hypocycloid: Num R=1.0 r=0.125
Hypocycloid: Num R=1.0 r=0.142857142857
Hypocycloid: Num R=1.0 r=0.166666666667
Hypocycloid: Num R=1.0 r=0.2
Hypocycloid: Num R=1.0 r=0.25
Hypocycloid: Num R=1.0 r=0.333333333333
Hypocycloid: Num R=1.0 r=2.0
Hypocycloid: Num R=1.0 r=3.0
Hypocycloid: Num R=1.0 r=4.0
Hypocycloid: Num R=1.0 r=5.0
< Epitrochoid | Hypocycloid | Hypotrochoid >
Messages:
0 secs.