SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Roulettes
Vive como se fosse morrer amanhã.
Estude como se fosse viver para sempre.
Einstein
< Hypocycloid | Hypotrochoid | Taxist Model >

Hypotrochoid: Extended Rolling of a Circle on the inside of a Circle

Formulas
r(t)=r{ωe(t)λp(ωt)} r(t)=rω{f(t)+λq(ωt)}
r(t)=rω{e(t)+λωp(ωt)} r^(t)=rω{e(t)λp(ωt)}
v(t)2=r2ω2{1+λ22λcos(ω+1)t} D(t)=r2ω2{1λ2ω+λ(ω1)cos(ω+1)t}
t(t)=rω{f(t)+λq(ωt)}r2ω2{1+λ22λcos(ω+1)t} n(t)=rω{e(t)λp(ωt)}r2ω2{1+λ22λcos(ω+1)t}
ψ(t)=1φ(t) φ(t)=1+λ22λcos(ω+1)t1λ2ω+λ(ω1)cos(ω+1)t
κ(t)=1rω1λ2ω+λ(ω1)cos(ω+1)t1+λ22λcos(ω+1)t3 ρ(t)=(r2ω2{1+λ22λcos(ω+1)t})3/2(r2ω2{1λ2ω+λ(ω1)cos(ω+1)t}
c(t)=r{ω(1φ(t))e(t)λ(1+ωφ(t))p(ωt)}
c(t)=
PDF: Hypotrochoid
Parameters
Attr Name Default Current Values
RR R 3.000000 1.0 1.0
r r 1.000000 -
b b -2.000000 -
Settings
Delay:
Type:
Every:
Use SVG Image tags:
Components
Curves
r:
r':
r'':
c:
c':
Functions
R:
Det:
ψ:
φ:
κ:
ρ:
Browse SVGs: Hypotrochoid
Legends 4_Evolute 3_d2R 5_dEvolute 2_d1R 1_d0R
Hypotrochoid: Num R=1.0 r=0.2 b=0.0
Legends 12_Phi 11_Psi 02_Det 14_Rho 01_v2 13_Kappa
< Hypocycloid | Hypotrochoid | Taxist Model >
Messages:
0 secs.