SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Axiomatic Geometry
Vive como se fosse morrer amanhã.
Estude como se fosse viver para sempre.
Einstein

Incidence

  • Axioms:
    • $I_1$, Foreach line, $r$, exists a point on the line - and a point off the line: \[ \forall r \in \mathcal{R}: \qquad \exists P \in \mathcal{P} \quad\wedge\quad \exists P \notin \mathcal{P} \]
    • $I_2$, two points defines a line (uniquely): \[ \forall P \neq Q \in \mathcal{P}: \qquad \exists ! r \in \mathcal{R}: \qquad P, Q \in r \]
    • $I_3$: Exists two (distinct) Points. \[ \exists P,Q \in \mathcal{P}: ~p \neq Q \]
  • Theorems:
    • $\mathcal{P} \neq \emptyset$
    • $ \exists P,Q,R \in \mathcal{P}$ distintos.
    • $ \exists r,s,t \in \mathcal{R}$ distintos.
  • Models:
    • 3 Points and 3 Lines.
    • 4 Points and 6 Lines.
TiKZ Listing: Fig.tikz.tex. PDF   PNG   SVG   ZIP*  
\tikzmath{\t=-0.15;};
\tikzmath{\tt=-0.25;};


\coordinate (A) at (0,0);
\coordinate (B) at (2,0);
\coordinate (C) at (0,2);
\coordinate (D) at (2.0,2.0);

\coordinate (V) at (4,0);



%Draw 3 Nodes
\filldraw (A) circle(1pt);
\filldraw (B) circle(1pt);
\filldraw (C) circle(1pt);

%Node Titles
\draw ($(A)!\tt!(C)$) node {$A$};
\draw ($(B)!\tt!(C)$) node {$B$};
\draw ($(C)!\tt!(B)$) node {$C$};

%Draw 3 Lines
\draw ($(A)!\t!(B)$) -- ($(B)!\t!(A)$);
\draw ($(A)!\t!(C)$) -- ($(C)!\t!(A)$);
\draw ($(C)!\t!(B)$) -- ($(B)!\t!(C)$);

   
\coordinate (A) at ($(A)+(V)$);
\coordinate (B) at ($(B)+(V)$);
\coordinate (C) at ($(C)+(V)$);
\coordinate (D) at ($(D)+(V)$);

%Draw 4 Nodes
\filldraw (A) circle(1pt);
\filldraw (B) circle(1pt);
\filldraw (C) circle(1pt);
\filldraw (D) circle(1pt);

%Node Titles
\draw ($(A)!\tt!(C)$) node {$A$};
\draw ($(B)!\tt!(C)$) node {$B$};
\draw ($(C)!\tt!(B)$) node {$C$};
\draw ($(D)!\tt!(C)$) node {$D$};


%Draw 6 Lines
\draw ($(A)!\t!(B)$) -- ($(B)!\t!(A)$);
\draw ($(A)!\t!(C)$) -- ($(C)!\t!(A)$);
\draw ($(C)!\t!(B)$) -- ($(B)!\t!(C)$);

   
\draw ($(D)!\t!(A)$) -- ($(A)!\t!(D)$);
\draw ($(D)!\t!(B)$) -- ($(B)!\t!(D)$);
\draw ($(D)!\t!(C)$) -- ($(C)!\t!(D)$);
Messages:
0 secs.