SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Axiomatic Geometry
O conhecimento adquirimos com os livros e os mestres.
A sabedoria aprendemos com o povo e os humildes.
Cora Coralina

Ruler Axiom

Exists Measure of Distance

  • Axiom: $\forall r \in \mathcal{R}$, exists Bijective Distance Function, $f: r \mapsto \mathbb{R}$: \[ d(A,B)= \left| f_r(B)-f_r(A) \right| \]
  • Definition, $X$ is inbetween $A$ and $B$:
    • $A, B, X \in \mathcal{P}$ colineares.
    • $d(A,X)+d(B,X)=d(A,B)$.
  • Put: $a=f(A)$, $b=f(B)$, $x=f(X)$.
  • $a*x*b \quad\Leftrightarrow\quad a<x<b \vee b<x<a$
  • Teorema: \[ A*X*B \quad\Leftrightarrow\quad a*x*b \]
  • Models and Distance Functions:
    • Cartesian:
      • Points: $\mathbb{R}^2$: $(x,y)$.
      • Lines: $y=ax+b$, $a,b \in \mathbb{R}$.
      • $f_r(x)=\sqrt{1+a^2} x$.
    • Taxist:
      • Points and Lines as in Cartesian.
      • $f_r(x)=(1+|a|) x$.


Main, Fig.tikz.tex:
TiKZ Listing: Fig/Fig.tikz.tex. PDF   PNG   SVG   ZIP*  
\tikzmath{\Size=1.5;};
\tikzmath{\Angle=30;};


\input{Defs.tikz}
\input{1.tikz}

\draw (Text) node [] {$(1)$};

\input{Inc.tikz}


\input{1.tikz}
\input{2.tikz}

\draw (Text) node [] {$(2)$};


\input{Inc.tikz}


\input{1.tikz}
\input{2.tikz}
\input{3.tikz}

\draw (Text) node [] {$(3)$};


\input{Inc.tikz}


\input{1.tikz}
\input{2.tikz}
\input{3.tikz}
\input{4.tikz}

\draw (Text) node [] {$(4)$};
Showing: /usr/local/Slides/2_Palestras/2019/1_TiKZ/05_Axiomatic/03_Ruler/Fig/Defs.tikz.tex:
TiKZ Listing: /usr/local/Slides/2_Palestras/2019/1_TiKZ/05_Axiomatic/03_Ruler/Fig/Defs.tikz.tex. PDF   PNG   SVG   ZIP*  
\tikzmath{\a=0.0;};
\tikzmath{\b=1.0;};
\tikzmath{\x=0.5*(\a+\b);};
\tikzmath{\ta=-0.3;};

\coordinate (Translate) at (2.25*\Size,0);

\coordinate (Text) at (1,-1.75);

\coordinate (O) at (0,0);
\coordinate (o) at (0.25,-1);

\coordinate (V) at (\Angle:\Size);
\coordinate (v) at (\Size,0);


\coordinate (A) at ($(O)+\a*(V)$);
\coordinate (B) at ($(O)+\b*(V)$);
\coordinate (X) at ($(O)+\x*(V)$);


\coordinate (a) at ($(o)+\a*(v)$);
\coordinate (b) at ($(o)+\b*(v)$);
\coordinate (x) at ($(o)+\x*(v)$);
Messages:
0 secs.