/usr/local/tikz/Common.tikz not found! /usr/local/tikz/Taxist/Ellipsis.tikz not found! \TiKZPath/Taxist/Ellipse/Draw/Curve.tikz not found! SmtC: Show me the Code!
SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br

Taxist
E se Eva tinha optado pela cobra?
Facebook.

Ellipsis

Foci $A(x_a,y_a)$ and $B(x_b,y_b)$:
  • Center: $\frac{1}{2}( A+B)$.
  • $ \mathcal{E}_c= \{ P \in \mathcal{P}|~~ d(A,P)+d(B,P)=2c \}, ~ c \in \mathbb{R} $
  • $d(A,P)<2c \wedge d(B,P)<2c$
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000000_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000005_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000010_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000015_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000020_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000025_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000030_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000035_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000040_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000045_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000050_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000055_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000060_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000065_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000070_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000075_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000080_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000085_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000090_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000095_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000100_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000105_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000110_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000115_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000120_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000125_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000130_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000135_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000140_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000145_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000150_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000155_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000160_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000165_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000170_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000175_0.svg
2_Palestras/2019/1_TiKZ/05_Axiomatic/10_Models/02_Taxist/05_Ellipse/Figs/Fig-000180_0.svg
TiKZ Listing: Figs/Fig-000045_0.tikz.tex. PDF   PNG   SVG   ZIP*  
%%! Skeleton File:      Fig.tikz.tex
%%! Destination File:   Fig-000045_0.tikz.tex
%%! Variation Command:  /usr/local/bin/variation Fig.tikz.tex Angle 0 180 37
%%! Generating Command: /usr/local/bin/tikz2svg Fig-000045_0.tikz.tex
%%! n:                  10 of 37
%%! From/to:            0-180
%%! t:                  45.0

%Size and angle of segment. Angle between 0 and pi.
\tikzmath{\L=sqrt(2);};
\tikzmath{\Angle=45.0;};

\input{/usr/local/tikz/Common.tikz}
\input{/usr/local/tikz/Taxist/Ellipsis.tikz}
Numerical comparisons with TeX:
TiKZ Listing: /usr/local/tikz/Taxist/Ellipse/Classify.tikz.tex. PDF   PNG   SVG   ZIP*  
%Cases, classification used by other parts:
%
%   Case 1 (I):    0   < \Angle 90
%   Case 2 (II):  90  < \Angle 180
%
%   Case 10: 0, horisontal
%   Case 11: 90, vertical
%
%Sets \Case to a case number and \CaseText to a text.
%

%Limit: 0 \leq Angle < pi.
\tikzmath{\TINY=0.001;};
\tikzmath{\LIMIT=\TINY;};


%Initial values, default case (90<<180)
\tikzmath{\Case=2;};
\def\CaseText{II};

%0<<90?
\tikzmath{\LIMIT=90;};
\ifthenelse{\lengthtest{ \Angle pt < \LIMIT pt}}{
    \tikzmath{\Case=1;};
    \def\CaseText{I};
}{}

\tikzmath{\ABS=abs(\Angle);};
%Horisontal?
\ifthenelse{\lengthtest{ \ABS pt < \LIMIT pt}}{
    \tikzmath{\Case=10;};
    \def\CaseText{Horisontal};
}{}

\tikzmath{\ABS=abs(\Angle-90);};
%Vertical?
\ifthenelse{\lengthtest{ \ABS pt < \TINY pt}}{
    \tikzmath{\Case=11;};
    \def\CaseText{Vertical};
}{}
Merging colors with TiKZ...
TiKZ Listing: /usr/local/tikz/Taxist/Ellipse/Draw/Curves.tikz.tex. PDF   PNG   SVG   ZIP*  
%Draw the actual Taxist Ellipse


\definecolor{curve1}{rgb}{1,0.5,0}
\definecolor{curve2}{rgb}{0,0,1}

%Calculate color factor
\newcommand{\ColorRel}[2]{
  \tikzmath{\crel=int(round(#2/#1*100));};
}



\tikzmath{\N=10;};
\tikzmath{\C=\L;};
\tikzmath{\CC=2*\L;};
\tikzmath{\dC=(\CC-\C)/\N;};
\foreach \n in {0,1,...,\N}
{
     %Change color
     \ColorRel{\N}{\n}
     \tikzstyle{Taxist_Ellipse}=[color=curve1!\crel!curve2]
     
     \tikzmath{\c=\C+\n*\dC;};
   \input{/usr/local/tikz/Taxist/Ellipse/Draw/Curve.tikz}
}
Messages:
0 secs.