|
SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br
|
|
A seriedade dos acontecimentos da minha época.
Me enche de esperança.
Karl Marx
|
Parametrization
$x(t),y(t) \in \mathcal{C}^2(I)$:
\[
\underline{r}(t)
=
\begin{pmatrix}x(t)\\y(t)\end{pmatrix},
~t \in I
\]
-
Velocity Vector:
\[
\underline{r}'(t)=\underline{r}'
=
\begin{pmatrix}
x'(t)\\y'(t)
\end{pmatrix}
\]
-
Accelleration Vector:
\[
\underline{r}''(t)=\underline{r}''
=
\begin{pmatrix}
x''(t)\\y''(t)
\end{pmatrix}
\]
-
Scalar Velocity:
\[
v(t)
=
\sqrt{x'^2+y'^2}
=
\left(\underline{r}' \cdot \underline{r}'\right)^{1/2}
\]
-
Determinant:
\[
det(t)
=
\begin{vmatrix}
x' & x''\\
y' & y''
\end{vmatrix}
=
\underline{r}'' \cdot \underline{\widehat r}'
\]
Projection of $\underline{r}''$ on $\underline{\widehat r}'$.
-
Regular Points: $\underline{r}'(t) \neq \underline{0}$.
-
Frenet System, $v(t)>0$. Origin in $\underline{r}(t)$
and Orthonormal Vectors:
\[
\underline{t}(t)
=
\frac{\underline{r}'}{v},
\qquad
\underline{n}(t)
=
\frac{\underline{\widehat r}'(t)}{v}
=
\underline{\widehat t}
\]
-
Natural Angle, $\theta(t)$:
\[
\underline{t}(t)
=
\begin{pmatrix}
\cos{\theta(t)}
\\
\sin{\theta(t)}
\end{pmatrix}
\]
-
Derivatives, Frenet Equations:
\[
\underline{t}'(t)
=
\theta'(t) \underline{n},
\qquad
\underline{n}'(t)
=
-\theta'(t) \underline{t}
\]
-
Angular Velocity:
\[
\omega(t)
=
\theta'(t)
=
\underline{t}' \cdot \underline{n}
=
\frac
{
\underline{r}'' \cdot \underline{\widehat r}'
}{v(t)^2}
~\left[ s^{-1}\right]
\]
-
Curvature:
\[
\kappa(t)
=
\frac
{
\underline{r}'' \cdot \underline{\widehat r}'
}{v(t)^3}
~\left[ m^{-1}\right]
\]
-
Curvature Ratio:
\[
\rho(t)
=
\frac{1}{\kappa(t)}
=
\frac{v(t)^3}
{
\underline{r}'' \cdot \underline{\widehat r}'
}
~\left[ m \right]
\]
-
Center of Curvature, Evolute:
\[
\underline{c}(t)
=
\underline{r}(t) + \rho(t) \underline{n}(t)
=
\underline{r}(t) + \omega(t) \underline{\widehat r}'(t)
\]
-
Oscullating Circle:
\[
\left(\underline{r}(t),
\rho(t)\right)
\]
Best Second Order Approximation.
-
Taylor Formula:
\[
\underline{r}(t)
=
\underline{r}(t_0)
+(t-t_0)
\underline{r}'(t_0)
+\frac{1}{2}(t-t_0)^2
\underline{r}''(t_0)
+
\underline{\varepsilon}(t)
\]
-
\[
c=\underline{e}(t) \cdot \underline{e}(t)
\Rightarrow
0=2\underline{e}'(t) \cdot \underline{e}(t)
\Leftrightarrow
\underline{e}'(t) \perp \underline{e}(t)
\]
|
Messages:
0 secs.
|