|
SmtC: Show me the Code
Ole Peter Smith
Instituto de Matemática e Estatística
Universidade Federal de Goiás
http://www.olesmith.com.br
|
|
O aspecto mais triste da humanidade hoje
É que ela cresce mais em ciência do que em sabedoria.
Isaac Asimov
|
Trochoids and Cycloids
Circle rolling on the $x$-axis, $r>0$, $b \in \mathbb{R}$:
\[
\underline{r}(t)
=
\begin{pmatrix}x(t)\\y(t)\end{pmatrix}
=
\begin{pmatrix}
r t-b\sin{t}
\\
r-b\cos{t}
\end{pmatrix}
=
r
\begin{pmatrix}
t-\lambda \sin{t}
\\
1-\lambda\cos{t}
\end{pmatrix},
\]
Dimensionless parameter: $\lambda=\frac{b}{r}\in \mathbb{R}$.
\[
\frac{1}{r}
\underline{r}(t)
=
\underbrace
{
\begin{pmatrix}
t
\\
1
\end{pmatrix}
}_\text{$\underline{R}(t)$}
-\lambda~
\underbrace
{
\begin{pmatrix}
\sin{t}
\\
\cos{t}
\end{pmatrix}
}_\text{$\underline{p}(t)$}
\]
-
\documentclass[]{standalone}
\usepackage{tikz}
\usepackage{pgfplots}
\usetikzlibrary{calc}
\pgfplotsset{compat=1.14}
\usepackage{xcolor}
%Draw Trochoids and Cycloid
%r fixed, b or Lambda varying
\tikzstyle{curves}=[
smooth,samples=200,
variable=\t,
domain=0:4*pi,
]
%Radius of rolling circle
\tikzmath{\r=1;}
%Number of curves to draw.
\tikzmath{\N=10;}
%Relative position of rollong point. Lambda=\pm 1: cycloid
\tikzmath{\LambdaMin=-2.0;}
\tikzmath{\LambdaMax=2.0;}
%Steps of aLambda
\tikzmath{\dLambda=(\LambdaMax-\LambdaMin)/\N;}
%Variation of colors - color in [0,100].
\tikzmath{\dcolor=100/\N;}
\begin{document}
\begin{tikzpicture}
%Coordinate system
\draw[-latex] (-\r,0) -- (4*pi+\r*\LambdaMax,0) node [right] {$x$};
\draw[-latex] (0,-\r) -- (0,\r*\LambdaMax) node [above] {$y$};
\foreach \n in {0,1,...,\N}
{
%\Lambda and color, \color
\tikzmath{\Lambda=\LambdaMin+\n*\dLambda;}
\tikzmath{\color=\n*\dcolor;}
%cos and sin expects degrees: deg(\t)
\draw
[
curves,
%Convex combination of colors
color=orange!\color!cyan
]
plot (
{ \r*( \t-\Lambda*sin(deg(\t)) ) },
{ \r*( 1-\Lambda*cos(deg(\t)) }
);
}
\draw
[
curves,thick,
color=blue
]
plot (
{ \r*( \t-sin(deg(\t)) ) },
{ \r*( 1-cos(deg(\t)) }
);
\end{tikzpicture}
\end{document}
|
-
Tangent or Velocity:
\[
\frac{1}{r}
\underline{r}'(t)
=
\begin{pmatrix}
1-\lambda \cos{t}
\\
\lambda\sin{t}
\end{pmatrix}
=
\begin{pmatrix}
1\\0
\end{pmatrix}
-
\lambda
\begin{pmatrix}
\cos{t}
\\
-\sin{t}
\end{pmatrix}
=
\underline{i}
-
\lambda\underline{q}(t)
\]
Unit vector:
\[
\underline{q}(t)
=
\begin{pmatrix}
\cos{t}
\\
-\sin{t}
\end{pmatrix}
\perp \underline{p}(t)
\]
\documentclass[]{standalone}
\usepackage{tikz}
\usepackage{pgfplots}
\usetikzlibrary{calc}
\pgfplotsset{compat=1.14}
\usepackage{xcolor}
%Draw Trochoids and Cycloid
%r fixed, b or Lambda varying
\tikzstyle{curves}=[
smooth,samples=200,
variable=\t,
domain=0:4*pi,
color=blue
]
\tikzstyle{rolling}=[
color=red
]
%Radius of rolling circle
\tikzmath{\r=1;}
%Number of curves to draw.
\tikzmath{\N=10;}
%Relative position of rollong point. Lambda=\pm 1: cycloid
\tikzmath{\LambdaMin=0.0;}
\tikzmath{\LambdaMax=2.0;}
%Steps of aLambda
\tikzmath{\dLambda=(\LambdaMax-\LambdaMin)/\N;}
%Variation of colors - color in [0,100].
\tikzmath{\dcolor=100/\N;}
\newcommand{\DrawTrochoid}[2]
{
%cos and sin expects degrees: deg(\t)
%Alternative: tikzpicture option trig format=rad
\draw[curves,#2]
plot
(
{ \r*( \t-#1*sin(deg(\t)) ) },
{ \r*( 1 -#1*cos(deg(\t)) ) }
);
}
%Fixed time - draw rolling
\tikzmath{\T=4*pi/3;}
\begin{document}
\begin{tikzpicture}
%Coordinate system
\draw[-latex] (-\r,0) -- (4*pi+0.5*\r*\LambdaMax,0) node [right] {$x$};
\draw[-latex] (0,-\r) -- (0,1.5*\r*\LambdaMax) node [above] {$y$};
\foreach \n in {0,1,...,\N}
{
%\Lambda and color, \color
\tikzmath{\Lambda=\LambdaMin+\n*\dLambda;}
\tikzmath{\col=\n*\dcolor;}
\DrawTrochoid{\Lambda}{color=blue!\col!cyan,thin}
}
%Draw cycloid
\tikzmath{\Lambda=1;}
\DrawTrochoid{\Lambda}{color=blue,thick}
\tikzmath{\Angle=deg(\T);}
\tikzmath{\xt=\r*( \T-\Lambda*sin(\Angle) );}
\tikzmath{\yt=\r*( 1-\Lambda*cos(\Angle) );}
\coordinate (RCycloid) at (\xt,\yt);
\filldraw[curves] (RCycloid) circle(1pt);
%Rolling center
\tikzmath{\xR=\r*\T;}
\tikzmath{\yR=\r;}
\coordinate (Rolling) at (\xR,\yR);
\filldraw[rolling] (Rolling) circle(1pt);
\draw[rolling] (Rolling) circle(\r);
%Point on last trochoid
\tikzmath{\px=-sin(\Angle);}
\tikzmath{\py=-cos(\Angle);}
\coordinate (p) at (\px,\py);
\coordinate (q) at (\py,-\px);
\coordinate (RTrochoid) at ($(Rolling)+\r*\LambdaMax*(p)$);
\draw[-latex,rolling] (RCycloid)-- +(q);
\draw[-latex,rolling] (Rolling)-- (RCycloid);
\draw[-latex,curves] (RCycloid)-- (RTrochoid);
%Tangent
\tikzmath{\drx=\r*(1-\LambdaMax*cos(\Angle));}
\tikzmath{\dry=\r*\LambdaMax*sin(\Angle);}
\coordinate (dr) at (\drx,\dry);
\draw[-latex,curves] (RTrochoid)-- +(dr);
\end{tikzpicture}
\end{document}
|
-
\[
\underline{p}(t)=
\begin{pmatrix}
\sin{t}
\\
\cos{t}
\end{pmatrix},
\qquad
\underline{q}(t)=
\begin{pmatrix}
\cos{t}
\\
-\sin{t}
\end{pmatrix}
\]
Not a RHS:
\[
\underline{\widehat q}(t)=\underline{p}(t),
\qquad
\underline{\widehat p}(t)=-\underline{q}(t)
\]
\[
\underline{p}'(t)=\underline{q}(t),
\qquad
\underline{q}'(t)=-\underline{p}(t)
\]
-
Acceleration:
\[
\frac{1}{r}
\underline{r}''(t)
=
\lambda
\begin{pmatrix}
\sin{t}
\\
\cos{t}
\end{pmatrix}
=
\lambda\underline{p}(t)
\]
Generated: 31 Dec 1969, 21:00:00
0 of 0 images
Base Path: /usr/local/
Glob Path: Images/3-Fig*.svg
|
Messages:
0 secs.
|